Take each number mod 37 and map it to the following character set: 0-25 is the alphabet (uppercase), 26-35 are the decimal digits, and 36 is an underscore.
simple code:
m = [387 ,248 ,131 ,272 ,373, 221,161 ,110 ,91 ,359 ,390 ,50, 225 ,184 ,223 ,137 ,225 ,327, 42, 179, 220 ,365]
import string
alpha = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'
test = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25]
flag = ''
for i in m:
if int(i%37) in test:
for j in alpha:
if alpha.index(j) == int(i%37) :
flag += j
elif int(i%37)!= 36:
flag += str(int(i%37)%26)
else:
flag += '_'
print(flag)
#R0UND_N_R0UND_B0D5F596
basic-mod2
Following the decription:
Take each number mod 41 and find the modular inverse for the result. Then map to the following character set: 1-26 are the alphabet, 27-36 are the decimal digits, and 37 is an underscore.
solve:
m = [145 ,126, 356, 272, 98 ,378 ,395 ,352, 392 ,215 ,446, 168 ,180 ,359 ,51, 190, 404, 209, 185, 115 ,363, 431 ,103 ]
import string
alpha = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ '
test = [0,1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25]
flag = ''
enc = [28, 13, 21, 30, 17, 32, 30, 11, 24, 37, 7, 31, 17, 3, 37, 30, 34, 31, 1, 4, 34, 1, 1] #-1
# [28, 14, 22, 30, 18, 32, 30, 12, 25, 37, 8, 31, 18, 4, 37, 30, 34, 31, 2, 5, 34, 2, 2]
for i in enc:
if i in test:
for j in alpha:
if alpha.index(j) == i :
flag += j
elif i != 37:
flag += str(i %27 )
else:
flag += '_'
print(flag)
# 1NV3R53LY_H4RD_374BE7BB
heTfl g as iicpCTo{7F4NRP051N5_16_35P3X51N3_V8450214}1
Notice that:
"but every block of 3 got scrambled around!"
if we shift char of "iicpCTo" first [0] to [3] we can get "piciCTo" than "picoCTi" continue do that until the last char is '" i ".
some code for loving:
m ='iicpCTo{7F4NRP051N5_16_35P3X51N3_V8450214}1'
m = list(m)
def solve(s):
s = list(s)
for i in range(0, len(s)-1,3):
s[i], s[i+3] = s[i+3], s[i]
return ''.join(s)
print(solve(m))
#picoCTF{7R4N5P051N6_15_3XP3N51V3_58410214}i
Vigenere
decrypt Vigenere with key: "CYLAB". That's quite easy.
picoCTF{D0NT_US3_V1G3N3R3_C1PH3R_0df54reb}
diffie-hellman
Actually this chall want us to find key by diffie-hellman then decrypt Caesar with that key
However, we can brute force they key without using diffie-hellman so that this chall have been deleted in picoCTF
At this point, my ancestor told me to do anything so I won't write anything from now on,
thank you for reading!
flag: picoCTF{Yu_toi_nho_em!}
Web
Includes
Inspect HTML
Local Authority
Search source
Power Cookie
Roboto Sans
SQLiLite
wscCTF 2022
Crypto
ANYTHING
This could be encrypted with ANYTHING! wfa{oporteec_gvb_ogd}
Vernam Cipher (One Time Pad Vigenere) =>flag: WSC{VIGENERE_NOT_BAD}
RSA With The Dogs
source: gen.sage
from random import getrandbits
from Crypto.Util.number import bytes_to_long
p = random_prime(2^(1024//2),False,2^(1023//2))
q = random_prime(2^(1024//2),False,2^(1023//2))
n = p*q
phi = (p-1) * (q-1)
done = False
while not done:
d = getrandbits(1024//4)
if (gcd(d,phi) == 1 and 36*pow(d,4) < n):
done = True
Flag = open('flag.txt').read().encode()
m=bytes_to_long(Flag)
e = Integer(d).inverse_mod(phi)
c=pow(m,e,n)
print("n =",n)
print("e =",e)
print("c =",c)
n = 80958280137410344469270793621735550547403923964041971008952114628165974409360380289792220885326992426579868790128162893145613324338067958789899179419581085862309223717281585829617191377490590947730109453817502130283318153315193437990052156404947863059961976057429879645314342452813233368655425822274689461707
e = 3575901247532182907389411227211529824636724376722157756567776602226084740339294992167070515627141715229879280406393029563498781044157896403506408797685517148091205601955885898295742740813509895317351882951244059944509598074900130252149053360447229439583686319853300112906033979011695531155686173063061146739
c = 80629080505342932586166479028264765764709326746119909040860609021743893395577080637958779561184335633322859567681317501709922573784403504695809067898870536224427948000498261469984511352960143456934810825186736399371084350678586129000118485271831798923746976704036847707653422361120164687989605124465224952493
assert(int(pow(c,d,n)) == m)
Notice: 36*pow(d,4) < n => P,Q computed with N,E (Wiener's attack)
flag: wsc{w13n3r5_wer3_bre4d_t0_hunt_b4dger5!}
EAV-Secure Diffie–Hellman?
source: key_exchange.py
from Crypto.Util.number import bytes_to_long
# I love making homespun cryptographic schemes!
def diffie_hellman():
f = open("flag.txt", "r")
flag = f.read()
a = bytes_to_long(flag.encode('utf-8'))
p = 320907854534300658334827579113595683489
g = 3
A = pow(g,a,p) #236498462734017891143727364481546318401
if __name__ == "__main__":
diffie_hellman()
# EAV-Secure? What's that?
Workflow:
A = pow(g,a,p) of course that's discrete log, i used sage math to calculate easily and get this result:
Nice, let's decrypt and gonna flag
Hmm this one's no meaning. May i am wrong in somewhere ?
No, i ensure my result !
At this time i review the code and notice that:
f = open("flag.txt", "r")
flag = f.read()
a = bytes_to_long(flag.encode('utf-8'))
Here we can see that flag may be bigger than p or flag may be add with phi(p) then after calculating modulo we'll get the same result. That is Fermat's little theorem.
Implement the idea!
from Crypto.Util.number import *
flag = 67514057458967447420279566091192598301
p = 320907854534300658334827579113595683489
g = 3
A = 236498462734017891143727364481546318401
for i in range(10000000):
flag_here = long_to_bytes(flag+(i*(p-1)))
if b'wsc{' in flag_here:
print(flag_here,'ehehhehhehhehe')
break
print(i)
After bruteforcing 8300951 times, you will get the flag :))))))